‘Gold’en Catalysis

· TGI - Catalysis, TGI - Nano & Beyond
Authors

A physicist at the University of York has played a key role in international research which has made an important advance in establishing the catalytic properties of gold at a nano level.

English: Picture of solution containing gold n...

English: Picture of solution containing gold nanoparticles. Македонски: Слика од раствор кој соджи златни наночестици. (Photo credit: Wikipedia)

Keith McKenna was part of a research team which discovered that the catalytic activity of nanoporous gold (NPG) originates from high concentrations of surface defects present within its complex 3D structure.

The research, which is published online in Nature Materials, has the potential to assist in the development of more efficient and durable catalytic converters and fuel cells because nanoporous gold is a catalytic agent for oxidizing carbon monoxide.

Bulk gold—the sort used in watches and jewelry—is inert but nanoporous gold possesses high catalytic activity towards oxidation reactions. The research team, which also included scientists from Japan, China, and the U.S., discovered, that this activity can be identified with surface defects found within its complex nanoporous structure. While nanoporous gold exhibits comparable activity to nanoparticulate gold, it is considerably more stable making it attractive for the development of catalysts with high performance and long lifetimes.

They created NPG by immersing an alloy of gold and silver in a chemical solution which removed the latter metal to create a porous atomic structure. Then, using transmission electron microscopy, they were able to detect evidence that the surface defects on the NPG were active sites for catalysis and the residual silver made them substantially more stable.

McKenna, of the Department of Physics at the University of York, said: “Unlike gold nanoparticles, dealloyed NPG is unsupported so we are able to monitor its catalytic activity more accurately. We found that there are many surface defects present within the complex structure of NPG which are responsible for the high catalytic activity.

“This work has given us a greater understanding of the catalytic mechanisms of NPG which will, in turn, shed light on the mechanisms of gold catalysis more broadly, they said.”

Source:

http://www.rdmag.com/News/2012/08/Materials-Scientists-Gold-Discovery-Sheds-Light-On-Catalysis/?et_cid=2794988&et_rid=54746652&linkid=http%3a%2f%2fwww.rdmag.com%2fNews%2f2012%2f08%2fMaterials-Scientists-Gold-Discovery-Sheds-Light-On-Catalysis%2f

1 Comment

Comments RSS

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: